Retta perpendicolare e passante per un punto

Prima di postare leggi le regole del Forum. Puoi anche leggere le ultime discussioni.

Retta perpendicolare e passante per un punto #10196

avt
Bustedd
Cerchio
Il problema è questo e riguarda il calcolo della retta perpendicolare a un'altra e tale da passare per un punto.

Traccia: scrivi l'equazione della retta

1) perpendicolare alla retta passante per A(2,5) e B(-3;-1)
2) passante per il punto C(-2;3).


Ecco come ho provato a risolverlo.

1) Ho trovato la retta per 2 punti e mi viene

y = \frac{6}{5}x + \frac{13}{5}\ \to\ m = \frac{6}{5}.

dunque r perpendicolare ad s in quanto: m \cdot m' = -1 e l'equazione di s:\ y = -\frac{5}{6}x la soddisfa.


2) Ho usato la formula

y -y_1 = m(x -x_1)

dove m è noto e anche x_1,\ y_1. Quindi

y - 3 = \frac{6}{5} ( x + 2)\ \to\  y = \frac{6}{5}x + \frac{27}{5}.


Il risultato del libro dice: 5x + 6y - 8 = 0. Mi sa tanto che non mi è venuta!
 
 

Retta perpendicolare e passante per un punto #10200

avt
frank094
Sfera
Ciao Bustedd, hai fatto tutto bene ma ti sei perso con un piccolo errore finale..

Il libro ti chiede di trovare la retta che sia perpendicolare alla retta passante per i due punti e che sia passante per il punto C.

Questo vuol dire che una volta trovato

m' = - \frac{5}{6}

dovrai trovare la retta con questo coefficiente angolare e passante per C = (-2, 3)

A questo proposito puoi usare la formula della retta passante per un punto.

Si ha infatti che

\\ s:\ y - 3 = - \frac{5}{6}(x + 2)\\ \\ s:\ 6(y - 3) = - 5(x + 2)\\ \\ s:\ 6y - 18 = - 5x - 10


Da cui, portando tutto a sinistra, si ottiene

s:6y + 5x - 8 = 0

Tutto chiaro? Magari dai uno sguardo al formulario su rette parallele e perpendicolari, ti tornerà utile!
Ringraziano: Omega

Retta perpendicolare e passante per un punto #10201

avt
Bustedd
Cerchio
Chiaro come sempre frank!

Il problema è che sbaglio sempre con il coefficiente. Metto quello della retta r e non quella della retta s, come in questo caso.

Grazie ancora! Se avrò altri problemi aprirò altri topic!

Retta perpendicolare e passante per un punto #10203

avt
frank094
Sfera
Magari una volta trovato prova ad evidenziarlo per bene così non finisci per prendere quello sbagliato, ma è un errore tutto sommato di distrazione e non concettuale quindi ci può stare (anche se bisogna evitarlo!).
Ringraziano: Omega
  • Pagina:
  • 1
Os