Soluzioni
  • I divisori di 8 sono: 1, -1, 2, -2, 4, -4, 8, -8, ossia tutti quei numeri interi relativi tali per cui dividendo 8 per ciascuno di essi si ottiene come resto 0.

    Ad esempio, poiché

    \\ 8:4 = 2, \mbox{ resto } 0 \\ \\ 8:2=4, \mbox{ resto } 0

    allora 4 e 2 sono divisori di 8, mentre 6 non è un divisore di 8 in quanto il resto della divisione tra 8 e 6 non è zero

    8:6=1, \mbox{ resto } 2

    Così come spiegato nella nostra guida sui divisori di un numero, nella scuola primaria ci insegnano come trovare i divisori positivi di 8 che sono 1, 2, 4 e 8.

    Dopo aver introdotto i numeri relativi occorre però ricordare che un divisore può essere anche negativo, quindi anteponendo un segno meno ai divisori positivi si ottengono i divisori negativi di 8, ossia -1, -2, -4 e -8.

    Solo a questo punto possiamo fornire l'elenco completo di tutti i divisori di 8, che sono:

    1, 2, 4, 8, -1, -2, -4, -8

    Come trovare i divisori di 8

    Per trovare i divisori di 8 è sufficiente:

    scomporre in fattori primi il numero 8

    \begin{array}{c|c} 8&2 \\ 4&2 \\ 2&2 \\ 1& \end{array}

    - svolgere tutti i possibili prodotti tra i fattori nella colonna di destra

    \\ 2\times 2 =4 \\ \\ 2\times 2 \times 2 = 8

    - ricordarsi di aggiungere l'1 (che è divisore di ogni numero) ed il 2 che è l'unico fattore primo di 8.

    Abbiamo così trovato i divisori positivi di 8: 1, 2, 4, 8.

    Anteponendo a tali numeri un segno meno possiamo scrivere tutti i divisori di 8: 1, -1, 2, -2, 4, -4, 8, -8.

    Come stabilire se un numero è un divisore di 8

    Per definizione, un numero è un divisore di 8 se e solo se il resto della divisione tra 8 ed il numero dato è zero. Risulta così evidente che:

    - se un numero è maggiore di 8 o minore di -8 non può essere un suo divisore;

    - se un numero è compreso tra -8 e 8 allora è un divisore di 8 se è nullo il resto della divisione tra 8 e tale numero.

    Esempio: stabilire quali tra -4, 2, 12 e 16 sono divisori di 8.

    Dal momento che 12 e 16 sono maggiori di 8 non possono essere suoi divisori mentre, poiché

    \\ 8 : (-4) = -2, \mbox{ resto } 0 \\ \\ 8:2=4 \mbox{ resto } 0

    2 e -4 sono divisori di 8.

    Per non lasciare spazio a dubbi rimandiamo alla nostra lezione su multipli, sottomultipli e divisori - click! ;)

    Risposta di Galois
 
MEDIEGeometriaAlgebra e Aritmetica
SUPERIORIAlgebraGeometriaAnalisiAltro
UNIVERSITÀAnalisiAlgebra LineareAlgebraAltro
EXTRAPilloleWiki
 
Esercizi simili e domande correlate
Domande della categoria Wiki - Algebra