Domande a risposta multipla sui numeri relativi
Ecco alcune domande a risposta multipla sui numeri relativi, devo individuare l'alternativa corretta. Riporto anche il mio svolgimento.
a) La potenza di un numero intero negativo è:
1) un numero intero positivo
2) un numero intero negativo
3) un numero naturale
4) un numero intero positivo se l’esponente è pari, negativo se l’esponente è dispari
5) un numero naturale negativo se l’esponente è dispari, positivo se l’esponente è pari
b) La scrittura "-a" rappresenta:
1) un numero negativo
2) un numero positivo o nullo
3) l’opposto di a
4) l’inverso di a
5) un numero negativo di una sola cifra
c) Fra le seguenti risposte una sola è FALSA. Quale?
Se a ∈ N e b ∈ N, la differenza a - b appartiene:
1) a N se a ≥ b
2) a N se a ≠ b
3) a Z- se a < b
4) a Z+ se a > b
5) a Z
d) L’uguaglianza (a-b)2 = (b-a)2:
1) non è mai vera
2) è vera solo se a = b
3) è vera solo se a ≥ b
4) è vera solo se a < b
5) è sempre vera
Svolgimento: a-5, b-3, c-5, d-5
Ciao Luigi, prima di cominciare premetto per evitare fraintendimenti che con numeri interi si intende proprio numeri interi relativi.
a) La potenza di un numero intero negativo è:
1) un numero intero positivo
2) un numero intero negativo
3) un numero naturale
4) un numero intero positivo se l’esponente è pari, negativo se l’esponente è dispari
5) un numero naturale negativo se l’esponente è dispari, positivo se l’esponente è pari
Perchè è la 4 e non la 5 ? Perchè i numeri naturali sono solo positivi, per definizione di non possono essere negativi!
b) La scrittura "-a" rappresenta:
1) un numero negativo
2) un numero positivo o nullo
3) l’opposto di a
4) l’inverso di a
5) un numero negativo di una sola cifra
[L'inverso sarebbe 1/a]
c) Fra le seguenti risposte una sola è FALSA. Quale?
Se a ∈ N e b ∈ N, la differenza a - b appartiene:
1) a N se a ≥ b
2) a N se a ≠ b
3) a Z- se a < b
4) a Z+ se a > b
5) a Z
Quella falsa è la 2 perchè se ad esempio a è più piccolo di b allora a-b è un intero negativo, e non è un numero naturale.
d) L’uguaglianza (a-b)2 = (b-a)2:
1) non è mai vera
2) è vera solo se a = b
3) è vera solo se a ≥ b
4) è vera solo se a < b
5) è sempre vera
Infatti dalla regola per il quadrato di un binomio
Namasté - Agente
Risposta di: Fulvio Sbranchella (Omega)
Ultima modifica: