correzione dominio 2
ln (1- radice di [(1-senx)/2+senx]
argomento del log maggiore di 0
argomento della radice maggiore o uguale a 0
2+senx diverso da 0
dunque,per 2+senx diverso da 0 ho messo sempre..
1-senx maggiore o uguale a 0 -->1 maggiore o uguale di senx--> x = 0
per quanto riguarda l'argomento del log maggiore di 0 ho messo sempre...
dominio tutto R
ci ho preso? :P
Ciao WhiteC, arrivo a risponderti...
Risposta di Omega
Essendo la funzione
dobbiamo imporre solamente due condizioni ("solamente" si fa per dire...):
1) Esistenza della radice, cioè radicando maggiore-uguale a zero
Studiando separatamente il segno di numeratore e denominatore, si trova
NUMERATORE
Per ogni , in quanto il seno è una funzione limitata tra
.
DENOMINATORE
Per ogni , ragionando esattamente come prima
2) Esistenza del logaritmo, cioè argomento del logaritmo strettamente positivo
Dobbiamo risolvere la disequazione
cioè
Dato che il secodno membro è una quantità costante, possiamo direttamente elevare al quadrato (nota che ci siamo già occupati delle C.E. della radice, ripetere il ragionamento qui sarebbe inutilmente ridondante )
Da cui
denominatore comune
Studiamo separatamente il segno di numeratore e denominatore, richiedendo che siano entrambi maggiori di zero
NUMERATORE
che ha soluzioni
DENOMINATORE
Nessun problema, è una quantità sempre positiva.
---
A noi interessano le che rendono la frazione positiva, quindi
che è il dominio della funzione considerata.
Namasté!
Risposta di Omega