Premettiamo che le risposte alle domande richiedono di conoscere davvero bene la teoria sui monomi.
1) Due monomi opposti sono simili? E due monomi di grado zero?
Vero! Due monomi si dicono opposti se e solo se hanno la stessa parte letterale - dunque sono simili - e se i loro coefficienti sono opposti.
La parte letterale dei monomi di grado zero hanno tutte parti letterali pari a 1, conseguentemente due monomi di grado zero sono necessariamente simili.
2) Quando due monomi simili sono anche uguali?
Due monomi simili sono uguali se e solo se hanno lo stesso coefficiente.
3) Due monomi di ugual grado, con uguali coefficienti e contenenti le stesse lettere, sono uguali?
No, non necessariamente. Come controesempio consideriamo i monomi
:
- entrambi hanno lo stesso coefficiente: 2;
- entrambi hanno lo stesso grado: 3;
- entrambi hanno le stesse lettere:
però i monomi sono diversi.
4) Spiegare perché le espressioni
non sono monomi.
Il quoziente di due monomi è un monomio se e solo se sussistono le seguenti condizioni:
- ogni lettera del monomio divisore compare nel monomio dividendo;
- ciascuna lettera del monomio dividendo ha esponente maggiore o al più uguale rispetto all'omonima del monomio divisore.
Se una delle condizioni viene meno, si parla più propriamente di frazioni algebriche
5) Spiegare perché la scrittura
può essere ricondotta a monomi.
In effetti, possiamo semplificare l'espressione data come segue:
ottenendo effettivamente un monomio con parte numerica pari a 5 e con parte letterale
.
6) L'affermazione "il monomio
non ha coefficiente" è corretta? Motivare la risposta.
No, il coefficiente del monomio
è pari a 1. La motivazione dietro questa scelta risiede nel fatto che 1 è l'elemento neutro della moltiplicazione.
7) Perché un numero può essere considerato un monomio?
Un qualsiasi numero è un monomio che ha coefficiente pari al numero e con parte letterale pari a 1.
8) La formula che esprime l'area della superficie laterale di un cilindro di altezza
e raggio di base
è un monomio? E la formula per l'area della superficie totale?
Ricordiamo che la formula per l'area della superficie laterale del cilindro di altezza
e raggio di base
è:
Essa è chiaramente un monomio con parte numerica
e parte letterale
.
La formula per l'area della superficie totale è invece
Essa è somma di monomi che non sono simili, di conseguenza non può essere a sua volta un monomio.
MEDIE | Geometria | Algebra e Aritmetica | |||
SUPERIORI | Algebra | Geometria | Analisi | Altro | |
UNIVERSITÀ | Analisi | Algebra Lineare | Algebra | Altro | |
EXTRA | Pillole | Wiki |