Aiutino integrale doppio: qui servono le coordinate polari?
ho un integrale doppio del tipo ||dx dy=
inoltre mi dice : (x^2)+(y^2)minore o uguale di 1.
cerco di svolgerlo con le coordinate polari e credo che sia un cerchio con centro 0;0 e raggio=1 giusto??
a questo punto lo porto nella seguente forma:
ῥ(rho) compreso tra 0 e 1
θ(theta) compresa tra 0 e 2π(pi greco).
secondo voi è giusto?? oppure sbaglio nel calcolarmi ῥ??
È tutto perfetto! infatti x2+y2≤1 è la circonferenza di centro (0,0) e raggio 1, mentre in coordinate polari ρ è il raggio e deve essere compreso, nel nostro caso, tra 0 e 1, mentre θ deve fare tutto il giro, quindi deve essere compreso tra o e 2Π.
Piuttosto...ricordati di aggiungere lo Jacobiano, che nel caso delle coordinate polari nel piano è ρ. Quindi sostituisci dxdy con ρdρdθ.
Namasté - Agente Ω
Risposta di: Fulvio Sbranchella (Omega)
Ultima modifica: