Soluzioni
  • Per semplificare l'espressione con i logaritmi

    -3log(x^2)+log(2x^3)+3log((1)/([3]√(2)x))

    sfrutteremo le seguenti proprietà:

    - la formula sul logaritmo del prodotto, secondo cui il logaritmo del prodotto è uguale alla somma tra i logaritmi dei fattori 

    log_(a)(bc) = log_(a)(b)+log_(a)(c)

    con b > 0, c > 0, a > 0, a ne 1

    - la formula sul logaritmo del quoziente, secondo cui il logaritmo del quoziente è uguale alla differenza tra il logaritmo del numeratore e il logaritmo del denominatore

    log_(a)((b)/(c)) = log_(a)(b)-log_(a)(c)

    con b > 0, c > 0, a > 0, a ne 1

    - la formula sul logaritmo di una potenza, secondo cui il logaritmo della potenza è uguale al prodotto tra l'esponente e il logaritmo della base della potenza

    log_(a)(b^(c)) = clog_(a)(b)

    con b > 0, c∈R, a > 0, a ne 1

    Dopo il brevissimo ripasso, riprendiamo l'espressione

    -3log(x^2)+log(2x^3)+3log((1)/([3]√(2)x)) =

    Semplifichiamo log(x^2) con la regola sul logaritmo della potenza

     = -3·2log(x)+log(2x^3)+3log((1)/([3]√(2)x)) = -6log(x)+log(2x^3)+3log((1)/([3]√(2)x)) =

    Sfruttiamo la regola del logaritmo del prodotto per semplificare log(2x^3)

    = -6log(x)+log(2)+log(x^3)+3log((1)/([3]√(2)x)) =

    e quella del quoziente per semplificare l'ultimo logaritmo

    = -6log(x)+log(2)+log(x^3)+3(log(1)-log([3]√(2)x)) =

    A questo punto usiamo nuovamente la proprietà sul logaritmo di una potenza su log(x^3) e quella sul logaritmo del prodotto per log([3]√(2)x)

     = -6log(x)+log(2)+3log(x)+3[log(1)-(log([3]√(2))+log(x))] = -6log(x)+log(2)+3log(x)+3[-log([3]√(2))-log(x)] =

    Interviene la definizione di potenza con esponente fratto che ci permette di rielaborare [3]√(2) come 2^((1)/(3))

     = -6log(x)+log(2)+3log(x)+3[-log(2^((1)/(3)))-log(x)] = -6log(x)+log(2)+3log(x)-3·(1)/(3)log(2)-3log(x) = -6log(x)+log(2)+3log(x)-log(2)-3log(x) =

    Abbiamo praticamente finito: bisogna solamente sommare tra loro i coefficienti dei termini simili

    = (-6+3-3)log(x)+(1-1)log(2) = -6log(x)

    È fatta!

    Risposta di Ifrit
 
MEDIEGeometriaAlgebra e Aritmetica
SUPERIORIAlgebraGeometriaAnalisiAltro
UNIVERSITÀAnalisiAlgebra LineareAlgebraAltro
EXTRAPilloleWiki
 
Esercizi simili e domande correlate
Domande della categoria Scuole Superiori - Algebra